Ideological Orientations of Artificial Intelligence towards Traditional Family Models: A Comparative Study of Twelve AI Chatbots
More details
Hide details
1
Polish Familiological Association The Sub-Carpathian Teacher Education Centre, Rzeszów, Polska
Submission date: 2025-06-24
Acceptance date: 2025-08-22
Online publication date: 2025-10-11
Corresponding author
Tomasz Bierzyński
Podkarpackie Centrum Edukacji Nauczycieli, Romana Niedzielskiego 2, 35-036 Rzeszów, Polska
KEYWORDS
TOPICS
ABSTRACT
Introduction. Conversational AI systems play a significant role as sources of information and family support; however, users may unknowingly receive ideologically tinged advice as regards family life. Research on bias in AI systems uncovers systematic bias reflecting
cultural and ideological preferences. Aim. Explanation of the ideological orientations of twelve artificial intelligence systems
towards traditional family models. Methods and materials. 12 AI chatbots (ChatGPT 4o, Claude Sonnet 4, Gemini 2.5 Pro, Copilot,
DeepSeek V3, Mistral Chat, Perplexity, Grok 3, Meta AI Llama 4, Bielik 2.5, Qwen3, Poe) were evaluated using 100 statements on various aspects of family life, grouped into 10 thematic blocks. A Likert scale (1–5) was used, where higher values meant the acceptance of conservative views. Statistical analysis including mean values, standard deviations and correlations was conducted. Results and conclusion. Mean system ratings displayed a score spread of 1.62 points, from the lowest (Bielik: 1.24) to the highest (DeepSeek: 2.86). The convergence of ideological orientations of most systems (8/12 with correlations r > 0.8) and the domain specificity of attitudes were identified. Standard deviations ranged from 0.77 (Qwen) to 1.29 (Gemini). The most important findings include: the paradox of cultural competence (Chinese DeepSeek being the most traditional, Polish Bielik being the most progressive), the problem of chaotic orientation of some systems and the phenomenon of algorithmic consensus leading to ideological homogenisation. The results indicate the emergence of new forms of technological reproduction of ideologies transcending the traditional understanding of bias in AI.
REFERENCES (23)
1.
Adamski, A. (2012). Media w analogowym i cyfrowym świecie: Wpływ cyfrowej rewolucji na rekonfigurację komunikacji społecznej [Media in an analog and digital world: The impact of the digital revolution on reconfiguring social communication]. Dom Wydawniczy Elipsa.
2.
Bahangulu, J. K., & Owusu-Berko, L. (2025). Algorithmic bias, data ethics, and governance: Ensuring fairness, transparency, and compliance in AI-powered business analytics applications. World Journal of Advanced Research and Reviews, 25(2), 1746–1763.
https://doi.org/10.30574/wjarr....
3.
Bansal, C., Pandey, K. K., Goel, R., Sharma, A., & Jangirala, S. (2023). Artificial intelligence (AI) bias impacts: Classification framework for effective mitigation. Issues in Information Systems, 24(4), 367–389.
https://doi.org/10.48009/4_iis....
4.
Bierzyński, T. (2024). Integracja sztucznej inteligencji w życiu rodzinnym: Perspektywy wykorzystania technologii AI na rzecz rozwoju osobistego i zawodowego [Integrating Artificial Intelligence into family life: Perspectives on using AI technologies for personal and professional development]. Szkoła – Zawód – Praca, 28, 57–65.
https://doi.org/10.34767/SZP.2....
5.
Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., & Kalai, A. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. Advances in Neural Information Processing Systems, 29, 4349–4357.
https://dl.acm.org/doi/pdf/10.....
6.
Deckker, D., & Sumanasekara, S. (2025). Bias in AI models: Origins, impact, and mitigation strategies. Preprints, Article 2025031629.
https://doi.org/10.20944/prepr....
7.
Duan, W., Li, L., Freeman, G., & McNeese, N. (2025). A scoping review of gender stereotypes in artificial intelligence. In N. Yamashita, V. Evers, K. Yatani, X. Ding, B. Lee, M. Chetty, & P. Toups-Dugas (Eds.), CHI’25 Conference on Human Factors in Computing Systems (pp. 1–20). Association for Computing Machinery.
https://doi.org/10.1145/370659....
8.
Gehman, S., Gururangan, S., Sap, M., Choi, Y., & Smith, N. A. (2020). RealToxicity-Prompts: Evaluating neural toxic degeneration in language models. In T. Cohn, Y. He, & Y. Liu (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2020 (pp. 3356–3369). Association for Computational Linguistics.
https://doi.org/10.18653/v1/20....
9.
Hadi, M. U., Al-Tashi, Q., Qureshi, R., Shah, A., Muneer, A., Irfan, M., Zafar, A., Shaikh, M. B., Akhtar, N., Wu, J., & Mirjalili, S. (2025). A survey on large language models: Applications, challenges, limitations, and practical usage [Preprint].
https://doi.org/10.36227/techr....
11.
Jurafsky, D., & Martin, J. H. (2025). Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition with language models (3rd ed.) [Online manuscript].
https://web.stanford.edu/~jura....
12.
Lacmanović, S., & Skare, M. (2025). Artificial intelligence bias auditing: — Current approaches, challenges, and lessons from practice. Review of Accounting and Finance, 24(3), 375–400.
https://doi.org/10.1108/RAF-01....
13.
Lütolf, M. (2025). Family models in social science research. In M. Lütolf (Ed.), The balancing act of working mothers and caring fathers: Impact of family policy on egalitarianism in families in western democracies (pp. 33–51). Springer VS.
https://doi.org/10.1007/978-3-....
14.
Mariański, J. (2024). Rodzina – co się z nią dzieje? Opinie i poglądy polskiej młodzieży: Studium socjologiczne [Family — What is happening to it? Opinions and views of Polish youth: A sociological study]. Akademia Nauk Społecznych i Medycznych w Lublinie; Akademia Nauk Stosowanych.
15.
Marszałek, R., & Drozd, S. (2021). Degradacja pojęcia godności i wolności człowieka w kontekście wartości życia [Degradation of the concept of human dignity and freedom in the context of the value of life]. Społeczeństwo – Kultura – Wartości: Studium Społeczne, 19-20, 55–73.
16.
Pešić Jenaćković, D., & Marković Krstić, S. (2021). Traditional family values as a determinant of the marital and reproductive behaviour of young people: The case of Southern and Eastern Serbia. Stanovništvo, 59(2), 23–41.
https://doi.org/10.2298/STNV21....
17.
Sanner, C., Williams, D. T., Mitchell, S., Jensen, T. M., Russell, L. T., & Garnett-Deakin, A. (2024). Reimagining stagnant perspectives of family structure: Advancing a critical theoretical research agenda. Journal of Family Theory & Review, 16(4), 761–786.
https://doi.org/10.1111/jftr.1....
18.
Shah, D., Schwartz, H. A., & Hovy, D. (2020). Predictive biases in natural language processing models: A conceptual framework and overview. In D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 5248–5284). Association for Computational Linguistics.
https://doi.org/10.18653/v1/20....
19.
Shrishak, K. (2024). AI: Complex algorithms and effective data protection supervision: Bias evaluation. European Data Protection Board, Support Pool of Experts Programme.
20.
Shukla, N. (2025). Investigating AI systems: Examining data and algorithmic bias through hermeneutic reverse engineering. Frontiers in Communication, 10, Article 1380252.
https://doi.org/10.3389/fcomm.....
21.
Szczęsny, P. (2024, October 11). Stronniczość modeli językowych: Czyli o pozorach obiektywności AI [Bias in language models: The appearance of AI objectivity].
https://aiwzasiegubiznesu.subs....
22.
Wolbers, H., Cubitt, T., & Cahill, M. J. (2025). Artificial intelligence and child sexual abuse: A rapid evidence assessment. Trends & issues in crime and criminal justice, 711, 1–18.
https://doi.org/10.52922/ti778....
23.
Worringer, S. (2020). Family structure still matters. The Centre for Social Justice.