Virtual autism – a neurodevelopmental disorder or the result of parental neglect?
 
More details
Hide details
1
Uniwersytet Komisji Edukacji Narodowej w Krakowie, Instytut Pedagogiki Specjalnej, Podchorążych 2, 30-084 Kraków, Polska
 
2
Uniwersytet Komisji Edukacji Narodowej w Krakowie, Instytut Psychologii, Podchorążych 2, 30-084 Kraków, Polska
 
 
Submission date: 2024-02-17
 
 
Final revision date: 2024-04-10
 
 
Acceptance date: 2024-05-05
 
 
Online publication date: 2024-06-27
 
 
Corresponding author
Joanna Monika Kossewska   

Uniwersytet Komisji Edukacji Narodowej w Krakowie, Instytut Pedagogiki Specjalnej, Podchorążych 2, 30-084 Kraków, Polska
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Aim. The article is illustrative and presents a description of the virtual autism, which is increasingly observed in public space, and is related to the excessive use of modern technologies. These concerns include the potential effects of children's long-term exposure and interaction with electronic devices and multimedia content that is not developmentally appropriate. Methods and materials. The data collection method was searching secondary sources, and the content analysis was done. The article was written mainly on the basis of psychological literature. Results and conclusion. Based on contemporary literature on the subject, the characteristics and conditions of this phenomenon were analyzed. There is no scientific consensus on whether or how exposure to digital technologies may cause virtual autism, but the harmful effects of digital devices on development during infancy and middle childhood cannot be underestimated. Due to the similarity of behavioral characteristics, virtual autism can be identified with autism spectrum disorders, the genetic mechanisms of which and their implications for the neuroatypical development path have been briefly described in order to illustrate the differences between the analyzed phenomena. While neurodevelopmental factors are central to understanding autism, it is important to note that parental neglect in itself is not considered a direct cause of autism. However, the social environment and early experiences may influence the manifestation and severity of symptoms in people with ASD. At the end, postulates for parenting practice are presented, the implementation of which may contribute to reducing the risk of virtual autism and at the same time increasing the development potential of modern children.
 
REFERENCES (88)
1.
Abrahams, B. S., Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355. DOI: 10.1038/nrg2346.
 
2.
Alabdulkareem, A., Alhakbani, N., Al-Nafjan, A. (2022). A systematic review of research on robot-assisted therapy for children with autism. Sensors, 22(3), 944. DOI: 10.3390/s22030944.
 
3.
Al-Beltagi, M. (2021). Autism medical comorbidities. World Journal of Clinical Pediatrics, 10(3), 15–28. DOI: 10.5409/wjcp.v10.i3.15.
 
4.
Alcorn, A., Pain, H., Rajendran, G., Smith, T., Lemon, O., Porayska-Pomsta, K., Foster, M. E., Avramides, K., Frauenberger, C., Bernardini, S. (2011). Social communication between virtual characters and children with autism. W: G. Biswas, S. Bull, J.
 
5.
Kay, A. Mitrovic (red.), Artificial Intelligence in Education (ss. 7–14). Springer. DOI: 10.1007/978-3-642-21869-9_4.
 
6.
Alrahili, N., Almarshad, N. A., Alturki, R. Y., Alothaim, J. S., Altameem, R. M., Alghufaili, M. A., Alghamdi, A. A., Alageel, A. A. (2021). The association between screen time exposure and autism spectrum disorder-like symptoms in children. Cureus, 13(10), e18787. DOI: 10.7759/cureus.18787.
 
7.
Álvarez-Mora, M. I., Sánchez, A., Rodríguez-Revenga, L., Corominas, J., Rabionet, R., Puig, S., Madrigal, I. (2022). Diagnostic yield of next-generation sequencing in 87 families with neurodevelopmental disorders. Orphanet Journal of Rare Diseases, 17(1), 60. DOI:10.1186/s13023-022-02213-z.
 
8.
Arteche-López, A., Gómez Rodríguez, M. J., Sánchez Calvin, M.,T., Quesada-Espinosa, J.,F., Lezana Rosales, J.,M., Palma Milla, C., Gómez-Manjón, I., Hidalgo Mayoral, I., Pérez de la Fuente, R., Díaz de Bustamante, A., Darnaude, M.,T., Gil-Fournier, B., Ramiro León, S., Ramos Gómez, P., Sierra Tomillo, O., Juárez Rufián, A., Arranz Cano, M. I., Villares Alonso, R., Morales-Pérez, P., Segura-Tudela, A., Camacho, A., Nuñez, N., Simón, R., Moreno-García, M., Alvarez-Mora, M. I. (2021). Towards a change in the diagnostic algorithm of Autism Spectrum Disorders: Evidence supporting whole exome sequencing as a first-tier test. Genes (Basel), 12(4), 560. DOI: 10.3390/genes12040560.
 
9.
Balan, C. (2018). Virtual autism and its effects on the child’s evolution. Scientific Research and Education in the Air Force – AFASES, 5, 323–328. DOI: 10.19062/2247-3173.2018.20.43.
 
10.
Baron-Cohen, S. (1987). Autism and symbolic play. British Journal of Developmental Psychology, 5(2), 139–148. DOI: 10.1111/j.2044-835X.1987.tb01049.x.
 
11.
Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Sciences, 6(6), 248–254. DOI: 10.1016/S1364-6613(02)01904-6.
 
12.
Baron-Cohen, S. (2008). Autism, hypersystemizing, and truth. The Quarterly Journal of Experimental Psychology, 61(1), 64–75. DOI: 10.1080/17470210701508749.
 
13.
Baron-Cohen, S., Leslie, A. M., Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 37–46. DOI: 10.1016/0010-0277(85)90022-8.
 
14.
Beopoulos, A., Géa, M., Fasano, A., Iris, F. (2022). Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Frontiers in Neuroscience, 16, 988735. DOI: 10.3389/fnins.2022.988735.
 
15.
Bibi, A., Khan, S. N., Rasheed, H., Kulsoom, U., Musharraf, M., Ali, S. (2022). Effects of increased electronic screen exposure and its relation with autistic spectrum symptoms (ASD): A cross-sectional study in Peshawar. Pakistan Journal of Medical Research, 61, 30–34.
 
16.
Bougeard, C., Picarel-Blanchot, F., Schmid, R., Campbell, R, Buitelaar, J. (2021). Prevalence of Autism Spectrum Disorder and co-morbidities in children and adolescents: A systematic literature review. Frontiers in Psychiatry, 27(12), 744709. DOI: 10.3389/fpsyt.2021.744709.
 
17.
Bruinsma, Y., Koegel, R., Koegel, L. (2004). Joint attention and children with autism: A review of the literature. Mental Retardation and Developmental Disabilities Research Reviews, 10(3), 169–175. DOI: 10.1002/mrdd.20036.
 
18.
Camilleri, L. J., Maras, K., Brosnan, M. (2024). Effective digital support for autism: Digital social stories. Frontiers in Psychiatry, 3(14), 1272157. DOI: 10.3389/fpsyt.2023.1272157.
 
19.
Careaga, M., Murai, T., Bauman, M. D. (2017). Maternal immune activation and autism spectrum disorder: From rodents to nonhuman and human primates. Biological Psychiatry, 81(5), 391–401. DOI: 10.1016/j.biopsych.2016.10.020.
 
20.
Carnett, A., Neely, L., Gardiner, S., Kirkpatrick, M., Quarles, J., Christopher, K. (2023). Systematic review of Virtual Reality in behavioral interventions for individuals with autism. Advances in Neurodevelopmental Disorders, 7, 426–442. DOI: 10.1007/s41252-022-00287-1.
 
21.
Chen, H. W., Yeh, S. L. (2019). Effects of blue light on dynamic vision. Frontiers Psychology, 10, 497. DOI: 10.3389/fpsyg.2019.00497.
 
22.
Chen, J. Y., Strodl, E., Wu, C. A., Huang, L. H., Yin, X. N., Wen, G. M., Sun, D. L., Xian, D. X., Chen, Y. J., Yang, G. Y., Chen, W. Q. (2021). Screen time and autistic-like behaviors among preschool children in China. Psychology, Health & Medicine, 26(5), 607–620. DOI: 10.1080/13548506.2020.1851034.
 
23.
Cheng, W., Rolls, E., Gong, W., Du, J., Zhang, J., Zhang, X. Y., Li, F., Feng, J. (2020). Sleep duration, brain structure, and psychiatric and cognitive problems in children. Molecular Psychiatry, 26(8), 3992–4003. DOI: 10.1038/s41380-020-0663-2.
 
24.
Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231–239. DOI: 10.1016/j.tics.2012.02.007.
 
25.
Clements, C. C., Zoltowski, A. R., Yankowitz, L. D., Yerys, B. E., Schultz, R. T., Herrington, J. D. (2018). Evaluation of the social motivation hypothesis of autism: A systematic review and meta-analysis. JAMA Psychiatry, 1, 75(8), 797–808. DOI: 10.1001/jamapsychiatry.2018.1100.
 
26.
Constantino, J. N., Przybeck, T., Friesen, D., Todd, R. D. (2000). Reciprocal social behavior in children with and without pervasive developmental disorders. Journal of Developmental & Behavioral Pediatrics, 21(1), 2–11. DOI: 10.1097/00004703-200002000-00002.
 
27.
Czarnecka, M., Żelazowska, M. (2023). Wykorzystanie programów komputerowych w pracy edukacyjno-terapeutycznej z dzieckiem ze spectrum autyzmu. Forum Pedagogiczne, 13(2), 1–14. DOI: 10.21697/fp.2023.1.05.
 
28.
Daghsni, M., Rima, M., Fajloun, Z., Ronjat, M., Brusés, J. L., M’rad, R., De Waard, M. (2018). Autism throughout genetics: Perusal of the implication of ion channels. Brain and Behavior, 8(8), e00978. DOI: 10.1002/brb3.978.
 
29.
Dawson, G., Toth, K., Abbott, R., Osterling, J., Munson, J., Estes, A. M., Liaw, J. (2004). Early social attention impairments in autism: Social orienting, joint attention, and attention to distress. Developmental Psychology, 40, 271–283. DOI: 10.1037/0012-1649.40.2.271.
 
30.
De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., Kou, Y., Liu, L., Fromer, M., Walker, S., Singh, T., Klei, L., Kosmicki, J., Shih-Chen, F., Aleksic, B., Biscaldi, M., Bolton, P. F., Brownfeld, J. M., Cai, J., Campbell, N. G., Carracedo, A., Chahrour, M. H., Chiocchetti, A. G., Coon, H., Crawford, E. L., Curran, S. R., Dawson, G., Duketis, E., Fernandez, B. A., Gallagher, L., Geller, E., Guter, S. J., Hill, R. S., Ionita-Laza, J., Jimenz Gonzalez, P., Kilpinen, H., Klauck, S. M., Kolevzon, A., Lee, I., Lei, I., Lei, J., Lehtimäki, T., Lin, C. F., Ma’ayan, A., Marshall, C. R., McInnes, A. L., Neale, B., Owen, M. J., Ozaki, N., Parellada, M., Parr, J. R., Purcell, S., Puura, K., Rajagopalan, D., Rehnström, K., Reichenberg, A., Sabo, A., Sachse, M., Sanders, S. J,. Schafer, C., Schulte-Rüther, M., Skuse, D., Stevens, C., Szatmari, P., Tammimies, K., Valladares, O., Voran, A., Li-San, W., Weiss, L. A,, Willsey, A. J., Yu, T. W., Yuen, R. K.; DDD Study; Homozygosity Mapping Collaborative for Autism; UK10K Consortium; Cook, E. H., Freitag, C. M., Gill, M., Hultman, C. M., Lehner, T., Palotie, A., Schellenberg, G. D., Sklar, P., State, M. W., Sutcliffe, J. S., Walsh, C. A., Scherer, S. W., Zwick, M. E., Barett, J. C., Cutler, D. J., Roeder, K., Devlin, B., Daly, M. J., Buxbaum, J. D. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526), 209–215. DOI: 10.1038/nature13772.
 
31.
Deckers, A., Roelofs, J., Muris, P., Rinck, M. (2014). Desire for social interaction in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 8(4), 449–453. DOI: 10.1016/j.rasd.2013.12.019.
 
32.
DeFrank, M. (2022). Digital detox: The two-week tech resets for kids. Ada, MI: Bethany House Publishers.
 
33.
Dehiol, R. K., Dawood, L. J., Alrubaee, R. J. (2022). Autism spectrum disorders and electronic screen devices exposure in Al-nasiriya city 2019–2020. Current Pediatric Research, 26(4), 1308–1316.
 
34.
Dijkhuis, R. R., Ziermans, T. B., Van Rijn, S., Staal, W. G., Swaab, H. (2017). Self-regulation and quality of life in high-functioning young adults with autism. Autism, 21(7), 896–906. DOI: 10.1177/1362361316655525.
 
35.
DSM-5 Task Force. (2013). Diagnostic and statistical manual of mental disorders: DSM-5™. Arlington, VA: American Psychiatric Publishing, Inc. DOI: 10.1176/appi.books.9780890425596.
 
36.
Eryilmaz, A. (2012). A model for subjective well-being in adolescence: Need satisfaction and reasons for living. Social Indicators Research, 107(3), 561–574. DOI: 10.1007/s11205-011-9863-0.
 
37.
Folstein, S., Rutter, M. (1977). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321. DOI: 10.1111/j.1469-7610.1977.tb00443.x.
 
38.
Frye, R. E., Vassall, S., Kaur, G., Lewis, C., Karim, M., Rossignol, D. (2019). Emerging biomarkers in autism spectrum disorder: A systematic review. Annals of Translational Medicine, 7(23), 792. DOI: 10.21037/atm.2019.11.53.
 
39.
Furmanek, W. (2018). Najważniejsze idee czwartej rewolucji przemysłowej (industrie 4.0). Dydaktyka Informatyki, 13, 55–63. DOI: 10.15584/di.2018.13.8.
 
40.
Grandin, T. (2006). Myślenie obrazami oraz inne relacje z mojego życia z autyzmem. Warszawa: Fraszka Edukacyjna: Fundacja Synapsis.
 
41.
Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., Miller, J., Fedele, A., Collins, J., Smith, K., Lotspeich, L., Croen, L. A., Ozonoff, S., Lajonchere, C., Grether, J. K., Risch, N. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102. DOI: 10.1001/archgenpsychiatry.2011.76.
 
42.
Happé, F., Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25. DOI: 10.1007/s10803-005-0039-0.
 
43.
Hermawati, D., Rahmadi, F. A., Sumekar, T. A., Winarni, T. I. (2018). Early electronic screen exposure and autistic-like symptoms. Intractable & Rare Diseases Research, 7(1), 69–71. DOI: 10.5582/irdr.2018.01007.
 
44.
Hill, E. L. (2004). Evaluating the theory of executive dysfunction in autism. Developmental Review, 24(2), 189–233. DOI: 10.1016/j.dr.2004.01.001.
 
45.
Hinkley, T., Brown, H., Carson, V., Teychenne, M. (2018). Cross sectional associations of screen time and outdoor play with social skills in preschool children. PLoS ONE, 13(4), e0193700. DOI: 10.1371/journal.pone.0193700.
 
46.
Hu, B. Y., Johnson, G. K., Teo, T., Wu, Z. (2020). Relationship between screen time and Chinese children’s cognitive and social development. Journal of Research in Childhood Education, 34, 183–207. DOI: 10.1080/02568543.2019.1702600.
 
47.
ICD-11: International Statistical Classification of Diseases and Related Health Problems. (2019). World Health Organization. Pobrane z: https://icd.who.int/en/.
 
48.
Jawed, A., Graham, H., Smith, J. (2023). Digital trends in autism: A scoping review exploring coverage of autism across YouTube, Twitter, and Facebook. Frontiers in Digital Health, 27(5), 1222187. DOI: 10.3389/fdgth.2023.1222187.
 
49.
Jiang, Y. H., Wang, Y., Xiu, X., Choy, K. W., Pursley, A. N., Cheung, S. W. (2014). Genetic diagnosis of autism spectrum disorders: The opportunity and challenge in the genomics era. Critical Reviews in Clinical Laboratory Sciences, 51(5), 249–262. DOI: 10.3109/10408363.2014.910747.
 
50.
Karimi, P., Kamali, E., Mousavi, S. M., Karahmadi, M. (2017). Environmental factors influencing the risk of autism. Journal of Research in Medical Sciences, 22, 27. DOI: 10.4103/1735-1995.200272.
 
51.
Kesari, K. K., Siddiqui, M. H., Meena, R., Verma, H. N., Kumar, S. (2013). Cell phone radiation exposure on brain and associated biological systems. Indian Journal of Experimental Biology, 51(3), 187–200.
 
52.
Kielar-Turska, M. (2011). Natura rozwoju psychicznego. W: J. Trempała (red.), Psychologia rozwoju człowieka (ss. 28–49). Warszawa: Wydawnictwo Naukowe PWN.
 
53.
Konu, A. I., Lintonen, T. P., Rimpelä, M. (2002). Factors associated with schoolchildren’s general subjective well-being. Health Education Research, 17(2), 155–165. DOI: 10.1093/her/17.2.155.
 
54.
Krishnan, A., Zhang, R., Yao, V., Theesfeld, C. L., Wong, A. K., Tadych, A., Volfovsky, N., Packer, A., Lash, A., Troyanskaya, O. G. (2016). Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nature Neuroscience, 19(11), 1454–1462. DOI: 10.1038/nn.4353.
 
55.
Kushima, M., Kojima, R., Shinohara, R, Horiuchi, S., Otawa, S., Ooka, T., Akiyama, Y., Miyake, K., Yokomichi, H., Yamagata, Z. (2022). Association between screen time exposure in children at 1 year of age and autism spectrum disorder at 3 years of age: The Japan environment and children’s study. JAMA Pediatrics, 176(4), 384–391. DOI: 10.1001/jamapediatrics.2021.5778.
 
56.
Lahiri, D., Sokol, D., Erickson C., Ray, B., Ho, Ch., Maloney, B. (2013). Autism as early neurodevelopmental disorder: Evidence for an sAPPα-mediated anabolic pathway. Frontiers in Cellular Neuroscience, 7. DOI: 10.3389/fncel.2013.00094.
 
57.
Lin, J., Magiati, I., Chiong, S. H., Singhal, S., Riard, N., Ng, I. H., Muller-Riemenschneider, F., Wong, C. M. (2019). The relationship among screen use, sleep, and emotional/behavioral difficulties in preschool children with neurodevelopmental disorders. Journal of Developmental & Behavioral Pediatrics, 40, 519–529. DOI: 10.1097/DBP.0000000000000683.
 
58.
Lord, C., Wilson, R. B. (2023). Digital phenotyping could help detect autism. Nature Medicine, 29(10), 2412–2413. DOI: 10.1038/s41591-023-02557-4.
 
59.
Md Zaki Fadzil, S. D., Murad, M. S. (2020). The relationship between electronic screen exposure and risk of autistic-like symptom among typically developing toddlers. Healthscope: The Official Research Book of Faculty of Health Sciences, UiTM, 3, 78–85.
 
60.
Melchior, M., Barry, K., Cohen, D., Plancoulaine, S., Bernard, J. Y., Milcent, K., Gassama, M., Gomajee, R., Charles, M. A. (2022). TV, computer, tablet and smartphone use and autism spectrum disorder risk in early childhood: A nationally-representative study. BMC Public Health, 22(1), 865. DOI: 10.1186/s12889-022-13296-5.
 
61.
Meregu, N. (2016). Long term exposure of mobile phone radiation and human health. Journal of Information Engineering and Applications, 6(8), 22–30.
 
62.
Minshew, N. J., Sweeney, J. A., Bauman, M. L., Webb, S. J. (2005). Neurologic aspects of autism. W: F. R. Volkmar, R. Paul, A. Klin, D. Cohen (red.), Handbook of autism and pervasive developmental disorders (ss. 473–514). DOI: 10.1002/9780470939345.ch18.
 
63.
Mundy, P. C., Henderson, H. A., Inge, A. P., Coman, D. P. (2007). The modifier model of autism and social development in higher functioning children. Research & Practice for Persons with Severe Disabilities, 32(2), 124–139. DOI: 10.2511/rpsd.32.2.124.
 
64.
Niu, M., Zhang, Y., Zhou, J. (2018). A survey on the use of electronic devices by children aged 1–3 in Shanghai. Shanghai Education Research, 2, 56–60.
 
65.
Parsons, S., Leonard, A., Mitchell, P. (2006). Virtual environments for social skills training: Comments from two adolescents with autistic spectrum disorder. Computers and Education, 47, 186–206. DOI: 10.1016/j.compedu.2004.10.003.
 
66.
Porayska-Pomsta, K., Frauenberger, C., Pain, H., Rajendran, G., Smith, T., Menzies, R., Foster, M. E., Alcorn, A., Wass, S., Bernadini, S., Avramides, K., Keay-Bright, W., Chen, J., Waller, A., Guldberg, K., Good, J., Lemon, O. (2012). Developing technology for autism: An interdisciplinary approach. Personal and Ubiquitous Computing, 16(2), 117–127. DOI: 10.1007/s00779-011-0384-2.
 
67.
Rajendran, G. (2013). Virtual environments and autism. Journal of Computer Assisted Learning, 29(4), 334–347. DOI: 10.1111/jcal.12006.
 
68.
Rajendran, G., Mitchell, P. (2006). Text chat as a tool for referential questioning in Asperger syndrome. Journal of Speech, Language, and Hearing Research, 49(1), 102–112. DOI: 10.1044/1092-4388(2006/008).
 
69.
Rajendran, G., Mitchell, P. (2007). Cognitive theories of autism. Developmental Review, 27(2), 224–260. DOI: 10.1016/j.dr.2007.02.001.
 
70.
Rajendran, G., Mitchell, P., Rickards, H. (2005). How do individuals with Asperger syndrome respond to nonliteral language and inappropriate requests in computer-mediated communication? Journal of Autism and Developmental Disorders, 35(4), 429–443. DOI: 10.1007/s10803-005-5033-z.
 
71.
Rask, K., Åstedt-Kurki, P., Tarkka, M.-T., Laippala, P. (2002). Relationships Among adolescent subjective well-being, health behavior, and school satisfaction. Journal of School Health, 72, 243–249. DOI: 10.1111/j.1746-1561.2002.tb07337.x.
 
72.
Sarfraz, S., Shlaghya, G., Narayana, S., Mushtaq, U., Shaman Ameen, B., Nie, C., Nechi, D., Mazhar, I. J., Yasir, M., Arcia Franchini, A. P. (2023). Early screen-time exposure and its association with risk of developing autism spectrum disorder: A systematic review. Cureus, 15(7), e4.2292. DOI: 10.7759/cureus.42292.
 
73.
Scarcella, I., Marino, F., Failla, C., Doria, G., Chilŕ, P., Minutoli, R., Vetrano, N., Vagni, D., Pignolo, L., Di Cara, M., Settimo, C., Quartarone, A., Cerasa, A., Pioggia, G. (2023). Information and communication technologies-based interventions for children with autism spectrum conditions: A systematic review of randomized control trials from a positive technology perspective. Frontiers in Psychiatry, 14, 1212522. DOI: 10.3389/fpsyt.2023.1212522.
 
74.
Schwab, K. (2018). Czwarta rewolucja przemysłowa. Warszawa: Studio Emka.
 
75.
Senju, A., Johnson, M. H. (2009). Atypical eye contact in autism: Models, mechanisms and development. Neuroscience & Biobehavioral Reviews, 33(8), 1204–1214. DOI: 10.1016/j.neubiorev.2009.06.001.
 
76.
Slobodin, O., Heffler, K. F., Davidovitch, M. (2019). Screen media and autism spectrum disorder: A systematic literature review. Journal of Developmental & Behavioral Pediatrics, 40(4), 303–311. DOI: 10.1097/DBP.0000000000000654.
 
77.
South, M., Ozonoff, S., McMahon, W. M. (2005). Repetitive behavior profiles in Asperger syndrome and high-functioning autism. Journal on Autism and Developmental Disorders, 35(2), 145–158. DOI: 10.1007/s10803-004-1992-8.
 
78.
Suchert, V., Hanewinkel, R., Isensee, B. (2015). Sedentary behavior and indicators of mental health in school-aged children and adolescents: A systematic review. Preventive Medicine, 76, 48–57. DOI: 10.1016/j.ypmed.2015.03.026.
 
79.
Suldo, S. M., Riley, K. N., Shaffer, E. J. (2006). Academic correlates of children and adolescents’ life satisfaction. School Psychology International, 27(5), 567–582. DOI: 10.1177/0143034306073411.
 
80.
Thompson, D. A., Christakis, D. A. (2005). The association between television viewing and irregular sleep schedules among children less than 3 years of age. Pediatrics, 116(4), 851–856. DOI: 10.1542/peds.2004-2788.
 
81.
Tick, B., Bolton, P., Happé, F., Rutter, M., Rijsdijk, F. (2016). Heritability of autism spectrum disorders: A meta-analysis of twin studies. Journal on Child Psychology and Psychiatry, 57(5), 585–595. DOI: 10.1111/jcpp.12499.
 
82.
Torchała, K. (2023). Spektrum autyzmu: Diagnozy na wyrost czy faktyczny wzrost przypadków? Pobrane z: https://zdrowie.pap.pl/rodzice....
 
83.
Van Biesen, D., Van Damme, T., Morgulec-Adamowicz, N., Buchholz, A., Anjum, M., Healy, S. (2023). A systematic review of digital interventions to promote physical activity in people with intellectual disabilities and/or autism. Adapted Physical Activity Quarterly, 41(2), 330–350. DOI: 10.1123/apaq.2023-0061.
 
84.
Venetsanou, F., Kambas, A., Gourgoulis, V., Yannakoulia, M. (2019). Physical activity in pre-school children: Trends over time and associations with body mass index and screen time. Annals of Human Biology, 46, 393–399. DOI: 10.1080/03014460.2019.1659414.
 
85.
Wieczorek-Płochocka, W. (2023). Autyzm cyfrowy – przyczyny, symptom, zwalczanie. Journal of Modern Science, 53(4), 622–638. DOI: 10.13166/jms/175992.
 
86.
Wu, X., Tao, S., Rutayisire, E., Chen, Y., Huang, K., Tao, F. (2017). The relationship between screen time, nighttime sleep duration, and behavioural problems in preschool children in China. European Child and Adolescent Psychiatry, 26(5), 541–DOI: 10.1007/s00787-016-0912-8.
 
87.
Zamfir, M. (2018). The consumption of virtual environment more than 4 hours/day, in the children between 0–3 years old, can cause a syndrome similar with the autism spectrum disorder. Journal of Literary Studies, 13, 953–968.
 
88.
Zeidan, J., Fombonne, E., Scorah, J., Ibrahim, A., Durkin, M. S., Saxena, S., Yusuf, A., Shih, A., Elsabbagh, M. (2022). Global prevalence of autism: A systematic review update. Autism Research, 15(5), 778–790. DOI: 10.1002/aur.2696.
 
eISSN:2300-5866
ISSN:2082-9019
Journals System - logo
Scroll to top